
LEARNING TO OVERTAKE IN DRONE RACING VIA RECURRENT REINFORCEMENT LEARNING

VINEET PASUMARTI [VINEETP@SEAS.UPENN.EDU]

ABSTRACT. We study the problem of enabling an autonomous drone to overtake a leading opponent in head-to-head racing.
While single-agent reinforcement learning with simple feedforward policies suffice for minimizing lap time, these policies fail
in competitive settings due to their inability to anticipate opponent motion. We propose a recurrent architecture that stacks a
two-layer LSTM and four-layer MLP and extends the ego drone’s observation with the full opponent state and is trained with
Proximal Policy Optimization. Our results show significant improvements in overtaking performance, with the recurrent policy
consistently outperforming pure feed-forward architectures in competitive racing scenarios.

1. INTRODUCTION

Autonomous drone racing presents a challenging reinforcement learning (RL) problem due to the importance
of real-time decision making and high-speed control in the presence of an opponent. In single-agent time trials in
simulation, effective policies that minimize lap time can be learned using simple feedforward neural networks (FNNs)
and model-free RL with full access to the agent’s true state. However, when the domain is expanded to multiple
agents, where drones must react to and overtake opponents, naive implementations of these policies tend to fail, despite
extending the observation space to include opponents’ states. We attribute this failure to the non-stationary transition
dynamics of the environment and a lack of temporal reasoning, which restricts the policy’s ability to recognize patterns
in opponent behavior and pilot accordingly.

To address this problem, we explore the use of recurrent neural networks (RNNs) in the form of Long Short-Term
Memory (LSTM) in head-to-head drone racing on a life-size figure 8 track. We fix the opponent drone’s policy and
train the ego drone to overtake. Our proposed method augments the ego drone’s observation space to include the full
state of the opponent drone, in contrast to the standard setup that only includes the opponent’s relative position. The
policy network is then structured as a two-layer LSTM followed by a four-layer multilayer perceptron (MLP), enabling
the agent to capture temporal patterns in both the opponent’s trajectory and its own motion. Our results indicate that the
recurrent architecture enables the ego drone to learn to anticipate and exploit the opponent’s behavior.

1.1. Contributions.
• We show that pure-MLP policies that succeed in single-agent racing fail to perform in head-to-head racing

despite fully observing the opponent state.
• We introduce an RNN-based architecture that improves overtaking behavior and demonstrate in simulation.
• We include supplementary videos of the policies here: Videos

2. BACKGROUND

On identical hardware, overtaking an opponent is oftentimes not a matter of achieving higher straight-line speed,
but rather executing deliberate trajectories to surpass the opponent during turns. In motorsport, drivers are told to
”carry more momentum” than the leading car when approaching an overtake. We define momentum as p = mv. If two
identical side-by-side vehicles approach a turn, the vehicle that maintains a greater forward velocity v through the turn
exits with greater momentum p, and therefore gains the positional advantage. The velocity, however, is constrained by
its centripetal acceleration ac, as defined in (1):

ac =
v2

r
(1)

In motorsport, ac is a function of the available lateral grip, typically modeled by a friction limit due to the track surface.
In the context of drone racing, the same principles apply in three-dimensional space only now with aerodynamic
constraints that limit ac. From (1), it follows that maximizing the turn radius r allows for a higher cornering velocity v.
This motivates wide cornering lines for overtaking. A drone that can anticipate an opponent’s future position will be
better at selecting a wide or tight racing line that maximizes its exit speed and also avoids collisions.

Existing RL-based racing policies typically optimize only for minimizing lap time, and do not account for the
presence of dynamic opponents. This is in part due to the implicit assumption in standard RL formulations that the
transition dynamics of the underlying Markov Decision Process (MDP) are stationary (2). In other words, standard RL

1

https://drive.google.com/drive/folders/1K8PSg8XNvDMh-DYS5Dq_SHrOkpW64ECa?usp=sharing


2 VINEET PASUMARTI [VINEETP@SEAS.UPENN.EDU]

approaches that succeed in single-agent racing environments assume that the next state s′ only depends on the current
state s and the agent’s action a, and not on another agent’s policy.

P (s′|s, a) (2)

The non-stationary nature of the environment in multi-agent drone racing leads to the failure of single-agent policies in
head-to-head competition as they are unable to anticipate opponent behavior.

LSTMs, a type of RNN, are well-suited for learning in temporally correlated environments. Unlike MLPs, LSTMs
maintain an internal memory that evolves over time, allowing them to capture patterns in sequential data. In multi-agent
drone racing, this capacity allows the policy to track the opponent’s motion over time and implicitly reason about its
future state; this leads to better policy updates.

3. RELATED WORK

[Geles et al., 2024] show that end-to-end reinforcement learning from pixels enables agile drone flight, but their
work focuses solely on single-agent time trials without opponent interaction. [Spica et al., 2018] address competitive
drone racing through a game-theoretic planner, though their approach relies on model-based control and assumes full
observability. [Werner et al., 2023] explore decentralized multi-agent learning for team-based racing, whereas our
work focuses on two-agent competition using a recurrent policy to learn overtaking behavior against a fixed adversary.
Hernandez-Leal et al. [2019] show that model-free approaches are more robust to dynamic opponents because they
directly learn a policy without relying on incorrect environment models, though we show that a model-free approach
alone is insufficient without temporal reasoning.

4. APPROACH

Our approach consists of a two-stage training pipeline designed to enable overtaking in drone racing using rein-
forcement learning. We first train a time-trial policy for a single drone to follow a figure-eight trajectory without any
opponents. This policy is then frozen and fixed to the opponent in a head-to-head two-drone setup, where a second ego
drone learns to anticipate and overtake the opponent. Both stages are trained using PPO, but differ in observation space,
architecture, and reward structure.

FIGURE 1. (Left) Screenshot of the life-size Figure-8 track in the Genesis simulator. A pink orb is visualized in the
center of the bottom-right gate denoting the current waypoint. (Center) The opponent drone’s neural controller receives
a 17-dim state and consists of a 2-hidden layer MLP with 128 neurons each. (Right) The ego drone’s neural controller
receives a 30-dim state and consists of two LSTM layers of 128 neurons each. The hidden state from the LSTM layers
is fed into a 4-hidden layer MLP of 256, 128, 128, and 64 neurons respectively.

4.1. Stage 1. Single-Agent Time-Trial Policy. In the first stage of our training pipeline, we train a drone in a
single-agent environment. The drone follows a 3D figure-eight trajectory by tracking a series of waypoints located at
the center of each gate in a life-size drone racing track. We opt to use a life-size track to expose abilities that benefit
from scale, such as reaching maximum speed in a straight, that are otherwise hidden in a scaled-down track. Conducting
RL on a life-size track also exposes obstacles that arise from long-horizon tasks and emulates real-world robot learning.

The observation space consists of 17 features: relative position to the next gate in the gate frame (3-dim), quaternion
(4-dim), body-frame linear velocity (3-dim), body-frame angular velocity (3-dim), and the previous control action
(4-dim).



LEARNING TO OVERTAKE IN DRONE RACING VIA RECURRENT REINFORCEMENT LEARNING 3

The policy is composed of a two-layer multilayer perceptron (MLP) with 128 hidden units per layer and utilizes tanh
activations, outputting a value between -1 and 1. The action space Aprop ∈ R4 is four-dimensional and maps the [-1,
1] output of the neural network Ann ∈ R4 to a propeller speed given by (3):

Aprop = 14468.429 ∗ (1 + 0.8Ann) (3)

We train the network using PPO and employ a clipped surrogate objective with the following hyperparameters: Clip
parameter: ϵ = 0.2; Desired KL divergence: 0.01; Entropy coefficient: 0.01; Discount factor γ = 0.99; GAE parameter:
λ = 0.95; Learning rate: 1 × 10−4; Number of epochs per iteration: 5; Number of minibatches per epoch: 4. We
simulate 8192 parallel environments and specify that each environment collects 100 timesteps of experience before
a PPO update is performed; the operating frequency is 50 Hz so 100 timesteps corresponds to 2 seconds. We use a
standard Actor-Critic PPO implementation from the RSL RL library by Rudin et al. [2022].

We use a dense reward to guide learning and encode
the task of racing, inspired by Geles et al. [2024] and re-
fined further through trial-and-error for our task. At each
timestep, we compute the total reward rt given by (4), and
the individual components of the total reward are defined
in (5). We use hyperparameters λ1 = 0.5, λ2 = 0.0005,
and λ3 = 0.0002. The progress reward rprog

t encourages
high velocity, the command reward rcmd

t penalizes taking
large actions and taking abrupt changes in action, the pass
reward encourages aiming for the center of the gate, and
the crash reward naturally penalizes collisions.

rt = rprog
t + rpass

t − rcmd
t − rcrash

t (4)

rprog
t = λ1 (dt−1 − dt)

rcmd
t = λ2 ∥at∥+ λ3 ∥at − at−1∥2

rpass
t =

{
1.0− dt, if passing gate
0, otherwise

rcrash
t =

{
5.0, if collision
0, otherwise

(5)

4.2. Stage 2. Multi-Agent Overtaking Policy. In the second stage of our pipeline, we train a second drone (or ego
drone) to race against the fixed opponent drone that executes the policy learned in Stage 1.

To enable overtaking behavior, the ego drone receives a 30-dimensional observation vector that includes both its
own full state and the opponent’s full state. Specifically, we append to the existing observation vector from Stage 1 to
include the opponent’s relative position to the ego in the ego frame (3-dim), opponent’s quaternion (4-dim), opponent’s
ego-frame linear velocity (3-dim), and the opponent’s ego-frame angular velocity (3-dim).

The ego drone’s policy is trained using a recurrent Actor-Critic PPO implementation from the RSL RL library Rudin
et al. [2022]. Both actor and critic networks share an identical architecture and 30-dimensional observation vector. We
use a two-layer LSTM module with a hidden size of 128, followed by a four-layer MLP with dimensions 256, 128,
128, and 64. The architecture uses tanh activations and is initialized with a action noise standard deviation of 1.0 for
early exploration. The hidden state of the LSTM allows the network to capture sequences in both the ego and opponent
motion and thus learn effective trajectories that overtake the opponent.

Compared to the single-agent baseline, the recurrent architecture possesses a larger capacity and now incorporates
memory through the LSTM hidden state as visualized in Figure 1. We decrease the learning rate from 1 × 10−4 to
1 × 10−5 and reduce the entropy coefficient from 0.01 to 0.008. The length of the temporal sequence processed by
the LSTM is 100 timesteps long. We modify the rewards from Stage 1 (4) to include an additional component, the
competition reward rcomp

t . We attempt two different approaches to define the competition reward,

rcomp
t = tanh(−0.1 ∗ dforward) (6)

rcomp
t =

{
1.0 if ego is at target and ahead in gate index
0, otherwise

(7)

in (6) and (7). Equation (6) encourages a constant forward lead over the opponent where dforward is the relative distance
from the ego drone to the opponent and projected onto the ego’s forward axis. This should shape the ego’s policy
to reduce the gap to the opponent and maximize a forward lead. Equation (7) encourages a discrete binary lead by
rewarding the ego with a fixed reward of 1.0 when it has both crossed the plane of a gate and maintains a higher current
gate index than the adversary. This is a deliberately sparse reward that leaves room for potential interactions where an
ego could temporarily forfeit a forward lead to position itself more favorably. In this project we attempt both reward
structures, but progress further with the dense reward (6). We retain the sparse reward (7) for potential ablation studies.



4 VINEET PASUMARTI [VINEETP@SEAS.UPENN.EDU]

5. EXPERIMENTAL RESULTS

We now evaluate the efficacy of our two-stage training pipeline in Table 1 with (i) the success rate, averaging the
number of gates the ego (or single-agent) drone passes over the total number of gates encountered over 45 seconds, (ii)
the crash rate, averaging the number of episode resets due to collision over 45 seconds, (iii) the fastest lap-time, and (iv)
the overtake rate, averaging the number of times the ego sustains a positional advantage after making an overtake. If the
drone does not learn to overtake at all, it is denoted with ’Fail’.

TABLE 1. Quantitative evaluation of single-agent and multi-agent policies. All policies use a 30-dimensional observa-
tion vector as input unless otherwise specified—the 20-dim input for policy (2) appends a 3-dimensional xyz relative
position of the opponent in ego frame. All multi-agent policies use the dense rcomp defined by (6).

Policy Success Rate Crash Rate Lap Time (s) Sustained Overtake Rate

(A) Single-Agent 2-layer MLP (17-dim input) 0.975 (39/40) 0.02 6.92 –
(B) 2-layer MLP (20-dim input) 0.517 (15/29) 0.31 DNF Fail
(C) 4-layer MLP 0.621 (18/29) 0.24 DNF Fail
(D) 4-layer MLP (Sparse rcomp) 0.588 (20/34) 0.31 DNF Fail
(E) 1-layer LSTM w/ 4-layer MLP 0.571 (12/21) 0.22 DNF Fail
(F) 2-layer LSTM w/ 3-layer MLP 0.535 (23/43) 0.49 DNF 0.33 (2/6)
(G) 2-layer LSTM w/ 4-layer MLP 0.857 (30/35) 0.18 7.65 0.50 (4/8)

Among the multi-agent policies evaluated, the 2-layer LSTM with 4-layer MLP architecture achieves the strongest
performance across all metrics. It not only exhibits the highest success rate (0.857) and lowest crash rate (0.18), but
also demonstrates the ability to consistently complete laps and perform sustained overtakes—maintaining a positional
advantage in 4 out of 8 attempts. In contrast, the pure MLP policies either crash frequently or fail to complete a lap,
and all are unable to perform any overtakes, indicated by the “Fail” entries in the final column. Most importantly, all
of the pure MLP policies demonstrate a total inability to fly with opponent observations as policy inputs. In fact, we
find that the highest performing pure MLP policy, policy (C), is able to fly smoothest when within the proximity of
the opponent, and when the opponent accelerates away from the ego drone in the straights, the ego’s loses control as
shown in Figure 2. We also note that the ego drone with policy (C) refuses to fly past and overtake the opponent, despite
clear opportunities to do so. This is likely because the bulk of its replay buffer consists of trajectories where it remains
behind, and this causes the policy to overfit to trailing behavior without discovering any overtaking actions. It is possible
that this behavior could be combated by training the ego policy using self-play, so that the opponent drone does not
dominate the race in early training. Training via self-play would provide instances during the exploration stage where
the ego may have a positive forward lead due to the opponent’s policy outputting equally arbitrary motor commands;
this could allow for the ego drone to discover overtaking despite having no temporal memory. In our specific training
pipeline, however, we show that lacking temporal memory prevents the pure MLP policies from acting effectively on
opponent observations.

Interestingly, the 2-layer LSTM with 3-layer MLP policy (F) shows signs of opponent anticipation by entering
corners on a wide racing line. As shown in the left plot of Figure 3, the policy tends to prolong its wide racing line
and regularly overshoots the following gate, losing the positional advantage and triggering the episode reset/collision
condition which results in a high crash rate (0.49) and a low sustained overtake rate (0.33). The 2-layer LSTM with
4-layer MLP policy (G) successfully anticipates and overtakes the opponent by entering corners on a wide racing line
and exiting on a tight and fast racing line, as seen in the right plot of Figure 3.

6. DISCUSSION

We show through head-to-head drone racing that competitive multi-agent RL environments require more than simply
extending the observation space or increasing network capacity. The failure of pure MLP policies to learn overtaking
behavior despite having full access to the opponent state suggests that temporal reasoning is essential for producing
competitive policies against dynamic opponents. Recurrent policies, such as the LSTM-MLP hybrid architecture
we propose, are able to leverage sequential data to anticipate and exploit suboptimal opponent trajectories. We best
demonstrate this observation by conducting successful overtakes in cornering scenarios.

The progression of our experiments also indicate that pure MLP policies appear to overfit to trailing behavior, likely
due to the replay buffer being saturated with trailing examples due to opponent ability. Future work could explore



LEARNING TO OVERTAKE IN DRONE RACING VIA RECURRENT REINFORCEMENT LEARNING 5

FIGURE 2. We show three plots of the ego drone (blue) using policy (C) and the opponent drone (magenta) using
policy (A) in flight at 3 seconds (Left) 6 seconds (Center) 8 seconds (Right). At 3 seconds, the ego drone is able to
keep up with the opponent drone, although it trails the opponent by approximately 1 meter. At 6 seconds, we see the
opponent drone accelerate to maximum forward velocity during a straight, at which moment the ego drone continues to
lag behind substantially. At 8 seconds, the gap between the ego drone and the opponent drone has grown sizably and
the ego drone fails to make progress along the track; the policy outputs poor commands and the ego drone plummets.
Only showcasing an ability to fly within proximity of the opponent is a recurring theme with the pure MLP policies.

FIGURE 3. (Left) We plot a four-second window of the ego drone (blue) using policy (F) and the opponent drone
(magenta) using policy (A). We deliberately highlight that the opponent drone approaches the top-right gate with a
suboptimal and tight racing line, causing it to enter the gate with a small turning radius and a low velocity. These
are prime conditions for an overtake, and the ego drone successfully exploits the opponent’s behavior by entering the
top-right gate at a higher velocity and with a wider racing line. However, the ego’s success ends as it maintains an
unnecessarily wide racing line well past the exit of the gate, by which time the competitive opponent regains its position
and velocity. (Right) We plot an eight-second window of the ego drone (blue) using policy (G) and the opponent
drone (magenta) using policy (A). It is evident for the first half of the lap that both drones maintain equally competitive
trajectories of similar position and velocity that compare favorably with the centerline (dotted blue). As both drones
approach the top-right gate, we see that the ego drone reduces its forward velocity and enters the gate with a wider
racing line than the opponent. By entering the turn wide, the ego drone is able to exit the turn on a tighter and faster line
than the opponent. This strategy aligns with the fundamentals of overtaking from Section 2.

curriculum learning or self-play to gradually increase the opponent ability and expose the ego drone to a wider variety
of situations.

While we shaped our final policy with a dense competition reward, the sparse competition reward may still offer
advantages. Future work could explore this reward to encourage longer-term planning and potentially allow for tactical
behavior that sacrifices existing racing lines for more favorable future racing lines.



6 VINEET PASUMARTI [VINEETP@SEAS.UPENN.EDU]

REFERENCES

Ismail Geles, Leonard Bauersfeld, Angel Romero, Jiaxu Xing, and Davide Scaramuzza. Demonstrating agile flight
from pixels without state estimation, 2024. URL https://arxiv.org/abs/2406.12505.

Pablo Hernandez-Leal, Bilal Kartal, and Matthew E. Taylor. A survey and critique of multiagent deep reinforcement
learning. Autonomous Agents and Multi-Agent Systems, 33(6):750–797, October 2019. ISSN 1573-7454. doi:
10.1007/s10458-019-09421-1. URL http://dx.doi.org/10.1007/s10458-019-09421-1.

Nikita Rudin, David Hoeller, Philipp Reist, and Marco Hutter. Learning to walk in minutes using massively parallel
deep reinforcement learning. In Proceedings of the 5th Conference on Robot Learning, volume 164 of Proceedings
of Machine Learning Research, pages 91–100. PMLR, 2022. URL https://proceedings.mlr.press/
v164/rudin22a.html.

Riccardo Spica, Davide Falanga, Eric Cristofalo, Eduardo Montijano, Davide Scaramuzza, and Mac Schwager. A
real-time game theoretic planner for autonomous two-player drone racing, 2018. URL https://arxiv.org/
abs/1801.02302.

Peter Werner, Tim Seyde, Paul Drews, Thomas Matrai Balch, Igor Gilitschenski, Wilko Schwarting, Guy Rosman,
Sertac Karaman, and Daniela Rus. Dynamic multi-team racing: Competitive driving on 1/10-th scale vehicles via
learning in simulation. In Jie Tan, Marc Toussaint, and Kourosh Darvish, editors, Proceedings of The 7th Conference
on Robot Learning, volume 229 of Proceedings of Machine Learning Research, pages 1667–1685. PMLR, 06–09
Nov 2023. URL https://proceedings.mlr.press/v229/werner23a.html.

https://arxiv.org/abs/2406.12505
http://dx.doi.org/10.1007/s10458-019-09421-1
https://proceedings.mlr.press/v164/rudin22a.html
https://proceedings.mlr.press/v164/rudin22a.html
https://arxiv.org/abs/1801.02302
https://arxiv.org/abs/1801.02302
https://proceedings.mlr.press/v229/werner23a.html

	1. Introduction
	1.1. Contributions

	2. Background
	3. Related Work
	4. Approach
	4.1. Stage 1. Single-Agent Time-Trial Policy
	4.2. Stage 2. Multi-Agent Overtaking Policy

	5. Experimental Results
	6. Discussion
	References

