
‘Beat-the-Expert’: An IL-RL Framework to
Outperform Expert Racing Policies

Vineet Pasumarti
GRASP Laboratory

University of Pennsylvania,
vineetp@seas.upenn.edu

Ethan Senatore
GRASP Laboratory

University of Pennsylvania
ethsen@seas.upenn.edu

Abstract: Scaled autonomous racing poses as an effective environment for devel-
oping perception, planning, and control algorithms with quantifiable performance
metrics. Learning-based control policies typically leverage end-to-end reinforce-
ment learning (RL) methods that are sample inefficient and prone to converging
at local optima. We present an autonomous racing framework on the F1TENTH
platform that bootstraps Proximal Policy Optimization (PPO) with a pre-trained
HG-DAGGER imitation learning (IL) policy to improve sample efficiency and ex-
ceed the performance of expert demonstrations of varying difficulty. The policy
we generate from our IL-RL framework surpasses the performance of the easi-
est expert demonstration, but fails to outperform the medium and hardest diffi-
culty experts. Our findings confirm an imitation learning bootstrap improves RL
sample efficiency, but also indicates that end-to-end RL may be most effective in
producing an agile control policy in the context of autonomous racing.

Keywords: F1TENTH, Imitation Learning, Reinforcement Learning

1 Introduction

1.1 Motivation

The fast-paced and dynamic nature of racing provides an excellent platform to test different RL
approaches. We identified this domain not only as an exciting application area but also as a practical
environment with quantifiable metrics for testing the limits of RL algorithms. The challenge of
pushing a robotic system to perform at high speeds while maintaining safety and precision peaked
our curiosity and led to the development of this project. Both RL and IL have emerged in literature
as feasible and competitive methods to solving the autonomous racing challenge. [1] End-to-end
reinforcement learning agents have even shown impressive capabilities in new settings which allows
for generalizable neural networks to have an adaptive racing policy [2]. We pose the question - can
RL improve upon an IL policy to produce more robust and agile control policies that outperform the
existing expert?

To investigate this, we chose the F1TENTH platform as our experimental testbed. Its scaled-down
format supported by a lightweight simulator offer a preferable setting to evaluate and train different
learning strategies. Ultimately, our goal is to better understand the trade-offs between imitation
learning and reinforcement learning in the context of autonomous racing. In doing so, we wished to
contribute insights into how these techniques can be combined to push the boundaries of autonomous
driving performance.

1.2 Background

End-to-end reinforcement learning approaches for autonomous racing have emerged as a successful
strategy to surpass expert-level performance, [3] even outperforming human experts in certain do-
mains like drone racing. There are far fewer studies that explore imitation learning for autonomous



racing. This is for good reason. Reinforcement learning by nature improves its policy through ’re-
ward hacking’ and maximizes cumulative rewards, allowing for impressive performance in racing
environments. [4] Imitation learning, however, typically reaches a performance ceiling determined
by the capabilities of the expert policy. We assert that the performance of the policy can be improved
upon by finetuning the weights of the IL neural network using on-policy reinforcement learning,
such as Proximal Policy Optimization.

The most naive implementation of imitation learning is Behavior Cloning (BC). Behavior cloning
uses supervised machine learning to map observations of the state space to actions, thus training
the agent to learn an expert demonstrator’s policy. BC, however, produces policies that are prone
to experiencing a distribution shift, as the actions of the agent eventually shift its observations to be
dissimilar from the expert data it was trained on.

Dataset aggregation (DAGGER) mitigates the effects of distribution shift by stochastically alternat-
ing control between the agent’s policy and the expert policy to collect corrective labels. [5] While
DAGGER reduces the compounding error issues of BC, it lacks strong convergence guarantees in
general settings [6]. Human-Gated DAGGER (HG-DAGGER) refines this by letting a human expert
serve as a gating function [7]. The agent executes actions until the human deems the state subopti-
mal and intervenes, at which point only the expert’s actions are recorded. In practice, we can define
a performance threshold to automate the human intervention. Existing work from Sun et al. [7]
demonstrates that HG-DAGGER is a viable and tested imitation learning algorithm for F1TENTH
autonomous racing.

Bootstrapping a PPO policy using HG-DAGGER presents a tractable method for autonomous ve-
hicle control and an opportunity to outperform expert demonstrators. Because end-to-end RL ap-
proaches suffer from sample inefficiency when faced with high-dimensional action spaces that op-
timize both steering and speed, strategically decomposing the action space by mapping LiDAR ob-
servations to steering angle during the IL bootstrap, and exploiting higher speed during RL, the final
policy may converge to outperform the expert demonstrations and/or exhibit superior performance
than an end-to-end solution.

1.3 Contributions

In this paper, we address the problem of performance caps on imitation learning policies in the
context of autonomous racing. We provide two major contributions:

1. We develop an IL-RL pipeline to surpass the performance of an expert demonstration.

2. We provide a comparison of end-to-end RL policies and bootstrapped RL policies for rac-
ing.

Figure 1: (Left) The F1TENTH racetrack used for training and evaluation of the learned policies
against expert demonstrations. (Right) The optimal raceline computed for minimum curvature and
followed by the expert policy using a pure pursuit controller.

2



2 Methodology

The agent’s policy network is pre-trained using HG-DAGGER and finetuned with Proximal Policy
Optimization (PPO) on a sample racetrack depicted in Figure 1. We repeat this process for each
difficulty of expert demonstrations (easy, medium, hard) to produce three policies that are evaluated
against the respective expert on the same racetrack that the policy is trained on.

2.1 Imitation Learning Bootstrap

We produce the learned policy inside the F1TENTH gym using HG-DAGGER for imitation learning.
The expert demonstrations follow a classical pure-pursuit controller on an optimal raceline trajectory
according to three different velocity profiles to represent three levels of difficulty. The learned
policy is a multi-layer perceptron (MLP) that observes a 54-dimensional, down-sampled 1080-ray
LiDAR scan concatenated with the car’s current linear velocity. The hidden dimension is 256 and
the learning rate is 0.0001. The pure-pursuit expert computes its control outputs using only the
vehicle’s (x, y) position and heading θ. The action space is continuous steering and speed for both
policies.

We define three expert policies as an easy, medium, and hard demonstrator. For the easy and medium
experts, we decouple the action space and fix their velocities at 3 m/s and 5 m/s respectively. The
pure-pursuit controller outputs steering angle in accordance with an optimal raceline trajectory that is
calculated by minimizing the summed curvature of the track and maintains a maximum top speed of
8 m/s [8]. The hard expert follows the longitudinal velocity (vx) and longitudinal acceleration (ax)
profiles of the optimal raceline trajectory, reaching a top speed of 8 m/s in straights and maintains a
minimum velocity of approximately 5 m/s in turns.

Human-gated imitation learning combats distribution shift by invoking the expert policy in unknown
states. We define two thresholds, γv and γω , which equal 1 and 0.1 respectively. The expert policy
is triggered during training when the difference in speed or steering angle between agent and expert
has a magnitude greater than the prescribed threshold.

2.2 Reinforcement Learning

We employ Proximal Policy Optimization (PPO) to finetune the weights of the pre-trained HG-
DAGGER imitation learning policy. The RL policy network utilizes an identical architecture as the
IL policy, maintaining a 54-dimensional down-sampled LiDAR scan concatenated with the vehi-
cle’s linear velocity, and produces continuous steering and speed commands as outputs. We import
weights from the HG-DAGGER policy network to initialize weights for the PPO policy network. We
experiment with both an identical transfer of all weights in the network as well as specifically copy-
ing the feature extraction layers and steering output weight while randomly initializing the velocity
input weight and speed output weight to encourage exploration.

The agent aims to maximize its cumulative rewards that track raceline progress, incentivize high
velocity, and penalize collisions. We structure our rewards as the following,

R = Rv +Rp +Rc (1)

where,
Rv = 0.25 · vt Rp = 10 ·∆st Rc = −1

where vt is the current forward velocity at time t which encourages the agent to maintain a high
speed, ∆st = st−st−1 represents the distance traveled along the track centerline since the previous
timestep, and Rc indicates a collision penalty of -1.

During training, the PPO agent interacts with the environment and collects experience tuples
(s, a, r, s′, log π(a|s), done) to inform policy updates:

State (s): The current observation (54-dimensional LiDAR scan + vehicle velocity) that
serves as input to the policy network.

3



Figure 2: Comparison of lap times for expert demonstrators and RL agents. The bootstrapped RL
agents show similar performance and are outperformed by the end-to-end RL agent. Only the easy
expert demonstrator is surpassed by the RL agents.

Action (a): Steering angle and speed commands.

Reward (r): Cumulative rewards as defined above.

Next state (s′): Resulting observation after executing action a that is used to estimate the
value function and calculate the advantage.

Log probability (log π(a|s)): The likelihood of an action under the current policy.

Done flag: Signals episode termination.

Our PPO implementation collects experiences in trajectories of 2048 steps before performing policy
updates. We employ Generalized Advantage Estimation (GAE) with λ = 0.95 to balance bias-
variance tradeoff in advantage calculations. Policy optimization occurs over 10 epochs with actor
and critic learning rates of 0.0002. We use mini-batches of size 64 and L2 regularization with
coefficient 0.001. We apply a discount factor γ of 0.99 and constrain the policy update with a clip
parameter ϵ of 0.2. We define the entropy coefficient and its decay as 0.001 and 0.99 respectively.

In our end-to-end reinforcement learning implementation, we maintain identical hyperparameters as
the bootstrapped policy but randomly initialize all weights in the MLP for training.

Policy evaluation occurs at regular intervals, measuring average rewards and velocities across mul-
tiple episodes without exploration noise to monitor learning progress.

3 Experimental Results

We evaluate the performance of the bootstrapped reinforcement learning policies against their re-
spective expert policies of varying difficulty levels (Easy, Medium, Hard), as seen in Figure 2. We
include a comparison of an end-to-end RL policy as well. Our performance metric is lap time where
lower times indicate better performance.

The Easy Bootstrapped RL agent (37.41s) significantly outperforms its corresponding Easy Expert
demonstrator (52.12s), achieving a 28.22% reduction in lap time. This indicates that the learned
policy successfully decouples the action space to learn the correct steering angles based on LiDAR
scan and increase speed beyond the expert demonstrations to maximize cumulative rewards.

4



Policy Average Speed (m/s) Average Lap Time (s)
Hard Expert 6.48 24.11

Medium Expert 5.01 31.27
Easy Expert 3.14 52.19

Hard Bootstrap RL 4.15 37.67
Medium Bootstrap RL 4.03 38.79

Easy Bootstrap RL 4.18 37.41
End-To-End RL 4.50 34.75

Table 1: Example Map Testing Across Different Policies

The Medium and Hard bootstrapped RL agents fail to outperform their corresponding expert demon-
strations. The Medium Expert achieves a lap time of 31.27 seconds, outperforming the Medium
Bootstrapped RL agent at 38.80 seconds. Similarly, the Hard Expert significantly outperforms the
Hard Bootstrapped RL agent, with lap times of 24.11 seconds and 37.68 seconds respectively. We
note that the performance gap between the expert and the bootstrapped RL agent widens as expert
quality improves. Despite being provided a pre-trained policy equivalent to the expert, our results
indicate that bootstrapped RL methods may struggle to match increasingly agile demonstrations in
the context of autonomous racing.

We also recognize that all three bootstrapped policies achieved similar lap times (37.41-38.80s)
despite being pre-trained by three different expert demonstrators of varying performance. This in-
dicates that our PPO implementation likely plateaus in performance due to the reward structure and
exploration parameters rather than by the performance of the imitation learning policy.

Interestingly, the End-to-end RL policy (34.75s), which was trained without imitation learning boot-
strapping, outperformed all bootstrapped approaches although it still fell short of outperforming the
Medium and Hard experts. The end-to-end RL agent’s similarity in lap time to the bootstrapped
agents also indicates the influence, or lack thereof, of the bootstrapped imitation learning policy
on the final performance. The importance of the RL reward structure and exploration parameters
strongly outweigh the importance of the bootstrap.

We also note in Table 1 that the RL agents converge to a constant velocity that is maintained through-
out the track, rather than vary velocity to achieve higher speeds in straightaways and maintain safe
control during turns, as the hard expert does. A deeper neural network may learn this behavior, how-
ever, the 2-hidden-layer MLP utilized in our PPO implementation converges to a uniform velocity
profile.

Although the IL bootstrap appears not to provide a lap time performance benefit compared to end-
to-end RL, we record significantly better sample efficiency, as the bootstrapped RL policy converges
at approximately 180,000 steps, compared to the end-to-end RL policy which converges at 500,000
steps.

For our end-to-end RL policy, finding a balance of the weights for each reward proved to be the
most significant hurdle to overcome to achieve good performance. Each time a model was trained,
we carefully noted how the policy behaved and whether it was able to strike a balance between
speed and safety. We found that the average reward per episode, average episode length, and loss
throughout training were the most helpful metrics to track to optimize performance. Additionally,
we experimented with various amounts of training time steps to find when the policy converged
to the best state. Ultimately, we found that ∼ 500, 000 time steps was sufficient for the policy to
converge. Figure 3 depicts the average reward per step and average episiode length per step for eight
different training runs that we went through. Each policy had its strengths and weaknesses, and
through careful experimentation we settled on the reward structure and weights mentioned in Eqn.
1. Each policy was trained on the example map depicted in Figure 1 which proved to be the most
well balanced track providing both long straights and sharp turns to train the policy.

5



Figure 3: (Left) The average reward per training step of eight different policies trained each with a
unique reward structure. (Right) The average episode length per training step. The red line is the
policy we settled with.

The end-to-end RL policy also proved to be successful in generalizing to different tracks. Due to the
nature of the observations provided to the policy, no map is memorized. In contrast, the agent is able
to adapt to various tracks and simply react to differing scans of its environment. Table 2 presents the
performance of the End-to-End RL policy across a diverse set of one-tenth sized real-world tracks.
Overall, the policy demonstrates a commendable degree of generalization, managing to complete
full laps on the majority of tracks despite being trained on a single map.

Track Average Speed (m/s) Average Lap Time (s) Lap Completion Percentage
Example Map 4.50 34.75 100

Spielberg 4.46 78.64 100
Nuerburgring 4.21 112.42 84

Sao Paulo 4.33 85.27 96
Spa 4.83 116.32 12

Hockenheim 4.85 81.63 8

Table 2: End-to-End RL Test Metrics Across Different Tracks Tested For 25 Laps

The Example Map, which the policy was trained on, yields optimal results with 100% lap comple-
tion, a moderate average speed (4.50 m/s), and a short lap time (34.75 s). On more complex circuits
like Spielberg and Sao Paulo, the policy still performs reliably, maintaining high completion rates
(100% and 96%, respectively), although lap times increase, indicating out-of-distribution curvature
that forces more cautious navigation and suboptimal trajectories. However, the agent’s limitations
become evident on tracks like Nuerburgring, Spa-Francorchamps, and Hockenheim. Although it
retains respectable speed (over 4.2 m/s in all cases), the lap completion percentage drops drastically,
especially on Spa (12%) and Hockenheim (8%). Figure 4 captures both the Hockenheim and Spa
tracks raced by the agent. As can be seen, both tracks contain sections with tight, technical turns,
which expose a fundamental weakness of the policy: its limited ability to plan through sharp or blind
corners. This is likely due to the reactive nature of its learned policy, which depends on immedi-
ate sensor inputs (e.g., LiDAR scans) without any map memory or long-term trajectory planning.
As noted, successful navigation through sharp corners occasionally occurred when the agent inad-
vertently took wider lines into turns, allowing for better environmental visibility. However, this
behavior appears to be incidental rather than intentional, underscoring the need for more diverse
training environments or the integration of planning components into the policy.

6



Figure 4: (Left) Hockenheim. (Right) Spa-Francorchamps.

4 Conclusion

This work explored the integration of imitation learning and reinforcement learning for autonomous
racing on the F1TENTH platform. We aimed to surpass expert demonstration performance and im-
prove upon previously laid-out work in the field. By bootstrapping PPO-based RL imitation policies,
we observed that the resulting agent could outperform the easiest expert but struggled to beat the
expert demonstrations. While the IL-RL framework significantly improved the sample efficiency
by converging nearly three times faster than end-to-end RL, the final lap times plateaued regardless
of the expert difficulty. Notably, end-to-end RL achieved the best lap times among learned poli-
cies and demonstrated commendable generalization to unseen tracks. However, the policy exhibited
limitations in handling sharp or technical turns due to its reactive and memory-less design.

In summary, while IL pre-training accelerates RL convergence for autonomous racing, achieving
performance surpassing experts may depend more critically on the RL algorithm’s configuration
and reward design. End-to-end RL, despite its sample inefficiency, showed potential for reaching a
higher performance peak in this specific setup.

Future work can explore training the end-to-end RL policy on different maps and accounting for
different types of turns an agent may encounter. Additionally, one could explore a different reward
structure as we still felt there was ample room for improvement in performance. Secondly, we were
curious to explore a curriculum learning approach using the expert demonstrations in order to more
properly guide the policy towards peak performance. Due to time constraints, we were unable to
explore these ideas and settled with simply tackling end-to-end RL and IL-RL.

Author Contribution

Vineet Pasumarti handled the IL-RL policy training and evaluation. Moreover, he was the project
lead and was fundamental to coming up with the project idea and sourcing the papers that supported
us throughout the entire project. Ethan Senatore handled the end-to-end RL policy training and
evaluation, focusing on the reward structuring and shaping for the policy, which was especially
important in order to inform the rewards for the IL-RL pipeline. Both authors contributed code to
expand the F1TENTH Gym codebase.

Each author contributed equally and wrote the other’s contribution statement.

7



References
[1] A. Kulkarni, J. Chrosniak, E. Ducote, F. Sauerbeck, A. Saba, U. Chirimar, J. Link, M. Behl,

and M. Cellina. Racecar - the dataset for high-speed autonomous racing. In 2023 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), page 11458–11463. IEEE,
Oct. 2023. doi:10.1109/iros55552.2023.10342053. URL http://dx.doi.org/10.1109/

IROS55552.2023.10342053.

[2] B. D. Evans, R. Trumpp, M. Caccamo, F. Jahncke, J. Betz, H. W. Jordaan, and H. A. Engel-
brecht. Unifying f1tenth autonomous racing: Survey, methods and benchmarks, 2024. URL
https://arxiv.org/abs/2402.18558.

[3] E. Kaufmann, L. Bauersfeld, A. Loquercio, et al. Champion-level drone racing using deep
reinforcement learning. Nature, 620:982–987, 2023. doi:10.1038/s41586-023-06419-4. URL
https://doi.org/10.1038/s41586-023-06419-4.

[4] P. Koirala and C. Fleming. F1tenth autonomous racing with offline reinforcement learning
methods, 2024. URL https://arxiv.org/abs/2408.04198.

[5] S. Ross, G. J. Gordon, and J. A. Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the 14th International Conference on
Artificial Intelligence and Statistics (AISTATS), volume 15, pages 627–635. PMLR, 2011.

[6] X. Sun, S. Yang, M. Zhou, K. Liu, and R. Mangharam. Mega-dagger: Imitation learning with
multiple imperfect experts, 2024. URL https://arxiv.org/abs/2303.00638.

[7] X. Sun, M. Zhou, Z. Zhuang, S. Yang, J. Betz, and R. Mangharam. A benchmark comparison
of imitation learning-based control policies for autonomous racing. In 2023 IEEE Intelligent
Vehicles Symposium (IV), pages 1–5, 2023. doi:10.1109/IV55152.2023.10186780.

[8] A. Heilmeier, A. Wischnewski, L. Hermansdorfer, J. Betz, M. Lienkamp, and B. Lohmann.
Minimum curvature trajectory planning and control for an autonomous race car. Vehicle System
Dynamics, 58(10):1497–1527, 2019. doi:10.1080/00423114.2019.1631455.

8

http://dx.doi.org/10.1109/iros55552.2023.10342053
http://dx.doi.org/10.1109/IROS55552.2023.10342053
http://dx.doi.org/10.1109/IROS55552.2023.10342053
https://arxiv.org/abs/2402.18558
http://dx.doi.org/10.1038/s41586-023-06419-4
https://doi.org/10.1038/s41586-023-06419-4
https://arxiv.org/abs/2408.04198
https://arxiv.org/abs/2303.00638
http://dx.doi.org/10.1109/IV55152.2023.10186780
http://dx.doi.org/10.1080/00423114.2019.1631455

	Introduction
	Motivation
	Background
	Contributions

	Methodology
	Imitation Learning Bootstrap
	Reinforcement Learning

	Experimental Results
	Conclusion

