Set Learning for Black-Box Systems via Dual
Gaussian Process Control Barrier Functions

Milad Mesbahi, M.S.E. Robotics, Vineet Pasumarti, M.S.E. Robotics

Abstract—We propose a data—driven framework for learning
safe operating regions of black-box robotic systems from inter-
action. The method maintains two Gaussian process models: one
for dynamics residuals and one for a state-space barrier function,
learned solely from observable quantities. These models induce a
robust control barrier function constraint with GP uncertainty,
yielding a convex quadratic program for real-time safety filtering
and a safety-aware Bayesian optimizer for controller tuning.
Under standard GP confidence assumptions, the framework
is compatible with high—probability safety analyses developed
for GP-based safe learning, but in this report we focus on
an empirical study, demonstrating data—efficient expansion of
the certified safe set in simulation while avoiding constraint
violations.

I. INTRODUCTION

Safe deployment of autonomous systems requires knowl-
edge of both the dynamics and the states in which the system
can operate without violating safety constraints. In practice,
simulation- or physics-based models differ from reality due
to unmodeled dynamics, parameter drift, and environmental
variability, and the true safe operating region is rarely known
apriori or is installation-specific (e.g., configuration-dependent
limits for manipulators or changing flight envelopes for aerial
robots) [1]-[3]. These uncertainties make safe online learning
challenging: the robot must explore to identify both dynamics
and safety margins, yet unsafe actions may cause irreversible
damage, motivating data-driven methods that (i) treat dynam-
ics and safety boundaries as unknown functions inferred from
noisy observations, (ii) explicitly represent uncertainty in these
functions, and (iii) use uncertainty-aware models to certify and
expand a safe set during learning.

II. PROBLEM FORMULATION

We consider a control-affine nonlinear system
x = f(x) + G(x)u (1)

and assume access to a nominal model fy(x) and Gg(x)
obtained from simulation or first principles.

Assumption 1. [4]-[6] The residual g(x) = f(x) — fo(x)
lies in a reproducing kernel Hilbert space (RKHS) Hj with
known kernel k : R™ x R™ — R and bounded norm |g|, < B.

Safety is encoded via a barrier function h : R® — R

defining the safe set: S = {x € R™: h(x) > 0}

Definition 1 (Control Barrier Function [7]). A continuously
differentiable function h : R™ — R is a control barrier function
(CBF) for system (1) on the set S = {x : h(x) > 0} if there

exists an extended class-K function o : R — R such that for
all x € S,

sup [Vh(x) " f(x) + Vh(x) G(x)u+ a(h(x))] > 0. (2)

ueld

If A is a CBF and there exists a Lipschitz controller 7 :
R™ — R™ satisfying (2), then S is forward invariant under
the closed-loop dynamics [8].

Problem Statement. Since A* is unknown, we cannot
directly enforce (2). Instead, we must learn an estimate of
h* from data. Given a conservative initial safe set So C §*,
nominal models (fy, ho), and confidence level § € (0,1), our
goal is to design an online dual learning and control scheme
that, with probability at least 1 — d: (i) keeps the closed-loop
state safe, x; € §* for all ¢, (ii) enlarges the certified safe set
monotonically, St - St+1, and (iii) encourages St to approach
S* as t — oo, while allowing performance-oriented control in
the interior of St [5], [6], [9].

III. METHODS

We maintain two Gaussian process (GP) models: one for the
dynamics residual g and one for the barrier function h*. We
first establish GP preliminaries, then present each component.

A. Gaussian Process Preliminaries

A GP defines a distribution over functions ¢ : R* — R
specified by a mean function m : R? — R and kernel k :
R xRY — R, written ¢ ~ GP(m, k) [10]. Given observations
{(zi, y:)}Y, with y; = ¢(z;) + w; and w; ~ N(0,02), the
posterior at z € R? is Gaussian with

n(z) = k(z) (K + 0’07 3)
0*(2) = k(z,2) — k(z)" (K+021)_1k(Z)> @)
where [k(z) p k(z,z;), [Kl|;; = k(zi,z;), and y =

[y17°"7yN]

Lemma 1 (Confidence Bound [11]). Let ¢ € H; with
|¢ll2, < B. Define B; = 2B + 300y, log®(t/5), where
is the maximum information gain for t samples under k. Then
with probability at least 1 — 6, for all t > 1 and z € R%:

6(2) — pu—1(2)| < B 204_1(2). )

B. Dynamics Residual Learning

We place a GP prior on the residual: g ~ GP(0, k). At
each timestep, we observe

yi =%t — fo(x¢) — G(x¢)ur + wy, (6)



a noisy measurement of g(x;), where w; ~ N(0,071). The

dataset D) = {(x;,yi)}i—, yields posterior mean s and
covariance Etg via (3)—(4). The learned dynamics is
fe() = fo(x) + ply (). )

By Lemma 1 and Assumption 1, the true drift satisfies f(x) €
&1(x) with probability at least 1 — d, where the confidence set
is

&) = {fit0 + A ()7 2Al < 872} ®)

C. Control Barrier Learning

We model the unknown safe set via a latent control barrier
function
S*={zxeX:h*(z) >0}, 9

which is not available to the controller. Instead, we learn a
function A : X — R from data and use its sign to define
a data-driven safe-set estimate S = {z : h(z) > 0}, in
the spirit of non-parametric Gaussian CBFs and supervised
CBF-learning approaches that parametrize safety certificates
directly from data [12]-[15]. We place a Gaussian process
prior h(-) ~ GP(0, kp) and collect training data from closed-
loop rollouts. During each rollout we observe state sequences
{xx}1_, together with a binary outcome indicating whether
the trajectory remained constraint-satisfying or experienced a
violation. From these observables we construct scalar labels

Yp = é(:z:k, outcome, T),

where 7 denotes trajectory-level statistics and ¢ : X x {0,1} x
T — R is a task-dependent scoring function. By design, /¢
assigns yr > 0 to states on trajectories with ample safety
margin, ¥ < 0 to states that precede observed violations, and
yr ~ 0 to near-miss states with small minimum margin. The
map ¢ is constructed solely from measurable features (e.g.,
distances, detector outputs) and does not require access to
h* or any latent parameters. Some application-specific feature
engineering and data selection are therefore unavoidable, but
all subsequent safety reasoning is carried out by the learned
GP barrier rather than a hand-designed analytic CBF [12].

Conditioning the GP on the dataset D! = {(z;,y:)}Y,
yields posterior mean y, () and variance o, (x). Our dataset
Dl = {(zs, )Y, K € RV*N has entries [Kyl;; =
kp(xi,z;), and yp = [y1,...,yn]"

For control, we use a conservative lower confidence bound

hty(x) = pih (x) — B,/ % (x), (10)

where 3} is chosen per Lemma 1. The certified estimated safe
set is

S, ={xeR":hl,(x) >0} (11)

For the squared exponential kernel kj,(x,x’) = o 2 exp(—||x—
x'||2_,/2) with L = diag(,...,¢,), the gradient of the
posterior mean is

Dy

ZO& k‘h XZ7 (

where a = (Kj, + 021)* Yh-

Vi, (x (12)

- x),

D. Safety Filter

Given a nominal control upep, (from another policy from RL,
LQR, etc.), we compute a safe control by solving a quadratic
program that enforces (2) for all dynamics in the confidence
set (8).

By Lemma 1, the true drift satisfies f(x) = fi(x) + A for
some A with ||(Sf(x))"/2All; < /%, with probability at
least 1 — §. Safety requires (2) to hold for all such A:

Vh(x)" (fi(x)+A+G(x)u)+a(h(x))

AER™
(4G~ All2<B,
(13)
Proposition 1. The robust constraint (13) is equivalent to
Vh(x)T (fi(x)+G(x)u) - 52| (S (x)) /2 Vh(x)|| ,+
(14)

This follows from the support function of an ellipsoidal
uncertainty set; see, e.g., [6], [16]. In practice, we enforce
(14) using the conservative barrier estimate h ., in place of h,
and obtain the applied control input u; by solving a convex
quadratic program

tnom |3 (15)
S.t. Vh’fcb (Xt)T (ft (Xt) + G(Xt)u) —
+ (i, (x¢)) 20,

which enforces the GP-robust CBF constraint as a hard in-
equality [12]. The controller and CBF-QP treat {z : hl (z) >
0} as the certified safe set, so that data collected online
both refines the geometry of the learned barrier and shrinks
its epistemic uncertainty; over time, this yields progressively
less conservative yet probabilistically safe behavior without
requiring a hand-designed analytic CBF for the task, which
can be quite difficult in practice [17].

* . _
up = argmin

2

E. Safe Bayesian Optimization

The framework extends to optimizing controller parameters
6 € © C R? while maintaining safety, as proposed in [18].
Let s : © — R denote safety (minimum hj,, over a trajectory)
and r : © — R denote reward. The goal is

j > 0.
max r(@) subject to s(0) >0 (16)

We place independent GP priors s ~ GP(0,k;) and r ~
GP(0,k ) After n evaluations, the posteriors yield ul,o?

and u;', 0. Define the safe parameter set
@:ffe ={0€0:u"0) —p%mO)>0}. (17
At each iteration, we select parameters via one of two
strategies:

Expansion: Maximize safety uncertainty near the boundary
of @safe.
cae:

— BY207(0) > —¢]. (18)

Exploitation: Maximize reward upper confidence bound
within ©%afe:

Oexp = arg Ienea‘é{ Os (0) 1 [:us (0)

Oop = arg max u"(8) + B/%07(0). (19)

eeenk

a(h(x) = 0.

(Xt))l/QVhlcb Xt H2



Algorithm 1 Dual GP Safe Set Learning

Require: Nominal model ( fo, G), base controller 7y, GPs for
residual g and barrier h, initial safe set 30
1: for episode k =1,2,... do
2 Sample z € Sp_1, set trajectory T < {zo}
3: fort=0,...,7—1do
4 Observe x; and compute nominal control upey —

Yyl (l't) .

5: Query dynamics GP at x; to obtain f;(z;) and
DIACTY

6: Query barrier GP at z; to obtain pf (z:), o} (z;),
and Vh;

7: Compute h}, (x;) and robust CBF constraint using
(12), (16)

: Solve CBF-QP to obtain safe control u;

Apply u;, observe x4, append to T

10: Form residual measurement from (8) and update
dynamics GP

11: end for

12: if no constraint violation observed in 7 then

13: For a subsample of 7, construct labels yp, (x) using
(25)

14: Update barrier GP with (z, yx(x))

15: end if

16: Update certified safe set Sk from the LCB safe set
(13)

17: end for

The algorithm alternates with probability pey, for expansion,
ensuring monotonic growth of O3,

IV. SIMULATION STUDY AND RESULTS
A. Discrete Gridworld

We first validate our approach on a discrete grid-
world environment that captures the essential structure of
the safe set learning problem. The gridworld is com-
posed of 15 by 15 cells with two types of hazards:
circular obstacles that
cause immediate failure
upon contact, and slip .= e .
zones where unknown e
probabilistic ~ dynamics :
affects the  agent’s
cell transitions. The
agent observes only
its current cell and
local surrounding within
a 1 cell radius. The
locations and extents of
the hazards are unknown apriori.

1) Discrete CBF Formulation: In the discrete gridworld set-
ting, the CBF constraint simplifies to action enumeration. For
each candidate action a € {UP, DOWN, LEFT, RIGHT, STAY },
we compute the expected next-state safety value accounting
for slip uncertainty:

h(s') = un(s') — B205(s") — 7 - Paip(5) - Asip,

Safe Set Expansion: Before vs After Learning

Episode 10
Sate: 167 cels (714.2%)

=3 safe 3 Frontier

Fig. 2: Safe-set expansion across 10
episodes in the discrete gridworld.

Algorithm 2 Safe Bayesian Optimization of Controller Pa-
rameters

Require: Parameter domain O, expansion probability pexp,
tolerance € > 0
1: Initialize safety GP for s(6) and reward GP for r(6)
2: Choose an initial safe 6y, evaluate with Algorithm 1,
obtain (sg,7¢), update GPs
for iteration n =1,2,... do
Form safe set ©%€, using the safety LCB (17)
if rand() < pexp then > Expansion step
Select #,, by maximizing safety uncertainty near
the boundary using (18)

A

7: else > Exploitation step

8: Select #,, by maximizing reward UCB over ©%¢,
using (19)

9: end if

10: Run Algorithm 1 with controller parameterized by 6,,

11: Compute safety summary s,, (e.g., min; h, (z¢)) and

task reward 7,

12: Update safety and reward GPs with (6,,s,) and
(ena’rn)

13: end for

14: return 0* < arg maxgces ;. (0)

2) Gridworld Results: We run 10 learning episodes on a
grid with two circular obstacles and two slip zones. The agent
starts from a bootstrapped safe region of radius 3 cells around
the origin. Figure 2 shows the monotonic expansion of the
certified safe set. Episode 1 coverage of 38.7% (87 cells) grows
to 74.2% (167 cells) by episode 10, with the expansion rate
decreasing as the frontier approaches true obstacle boundaries.
We record 5 total collisions over 10 episodes, with 4 occurring
in episodes 1-5 and only 1 in episodes 6-10. After episode 6,
the learned safety GP provided sufficient coverage to prevent
further violations.

B. Continuous

We extend our framework on a 1D position continuous
control task intentional model mismatch in both dynamics and
safety. A point mass moves within bounds |p| < pmax under
wind disturbance, with state x = [p,v]" and discrete-time
dynamics

Prr1 = pr+Atv, v = v+ At(ug 4 d(pe, v, 1)), (21)

where d(-) is an unknown disturbance. We introduce two
sources of mismatch that mimic common modeling errors.
First, a dynamics mismatch: the true disturbance combines
position-dependent wind, velocity drag, time-varying gusts,
and directional bias

P2
1+ p?

position push

d(p,v,t) = ¢y sgn(p) —cqu|v|+ Ay sin(wgt) +dp,

drag gust

(22)
while the analytic baseline assumes only a bounded distur-
bance |d| < d, underestimating the true magnitude near
the boundary. This wind model captures how constraints can



Velotity v
Position p
(=]

o

-0.5

+e+ = Plain LOR
Analytic CBF —a
—— Dual Leaming

-1.5 -1.0 ~0.5 0.0 05 10 L5 0 20
Position p

Time step

60 80 100 =1.0 =0.5 0.0 0.5 1.0
Pasitien p

Fig. 1: Safe-set and dynamics learning under model mismatch. Left: true (blue), assumed analytic (red), and learned GP (green) safe-set
boundaries in (p, v). Middle: position trajectories for plain LQR, analytic CBF, and dual learning under aggressive tracking. Right: GP model
of the wind disturbance, showing mean and confidence bands versus position.

exhibit complex nonlinear behavior that is difficult to encode
analytically without online adaptation. Second, a barrier mis-
match: the true safe set has velocity—position coupling

h*(x) = phax — P> — Anlv]|pl, (23)

whereas the analytic baseline uses ho(x) = p2,,, —p?, naively
ignoring velocity effects.

Task. An LQR controller tracks a reference p,of near the
boundary with weights @ = diag(g,, ¢,). Larger g, produces
more aggressive tracking but increases the risk of constraint
violation.

Observable Labels. A key challenge is learning the barrier
without oracle access to h*(x). Our framework focuses on
learning from safe trajectories: the conservative CBF-QP
produces rollouts that, in our simulations, remain within S*,
so true violations are rare and most data come from near—safe
behavior. We therefore construct labels from observables along
surviving trajectories,

— Pmax — |p| Y |U| |p‘

Y
Umax Pmax

Yn(x) ; (24)

pmax
which heuristically encode that safety margin decreases with
(i) proximity to the wall and (ii) high velocity near the
boundary. These labels depend only on measured states (p, v)
and do not require access to h* or latent parameters. After
each episode, we update the barrier GP with subsampled
trajectory labels, progressively refining S, while preserving
its conservative, inner-approximation character.

Methods. We compare: Plain LQR: no safety filter (perfor-
mance upper bound); Analytic CBF: mismatched barrier hg
and assumed bound |d| < d; Dual Learning: learns dynamics
and barrier via Algorithm 1.

Training uses two phases: conservative exploration (low
gp, high CBF gain «) followed by moderate exploration,
accumulating approximately 400 barrier samples and 2500
dynamics samples over 25 episodes.

Results. Figure 1 (left) compares the true, assumed, and
learned safe sets. The position-only analytic barrier substan-
tially overestimates safety at high speeds, failing to con-
tract near the wall. In contrast, the observation-based barrier
GP learns the velocity-dependent tightening and yields a
conservative inner approximation of S*. Figure 1 (middle)
shows closed-loop trajectories under aggressive LQR weights
(gp, gv) = (5.0,1.0): plain LQR drives the state close to or

beyond the boundary, the analytic CBF occasionally prevents
violations but admits near-misses, while the dual learning
controller maintains a larger safety margin. Figure 1 (right)
illustrates dynamics learning: with relatively few samples,
the GP mean tracks the true wind field and the uncertainty
inflates in poorly explored regions, inducing more conserva-
tive CBF constraints there. Table I summarizes safety over
8 independent episodes. An episode is counted as safe if
ming h*(x) > 0.

The analytic = CBF
underestimates disturbance TABLE I: Safety comparison
near boundaries where
wind bias compounds, _Method Safe rate
and permits high-velocity Plain LQR 0/8 (0%)
approaches that violate Analytic CBF 5/8 (62%)

the true barrier (23). Our  Dual Learning 8/8 (100%)

method learns both effects
from data.

V. DISCUSSION AND CONCLUSION

By jointly modeling dynamics residuals and a latent control
barrier function, we successfully constructed a GP—robust CBF
constraint that can be enforced via a convex quadratic program,
and coupled it with a SafeOpt-style Bayesian optimizer for
controller tuning.

Our experiments exposed several practical challenges. First,
the barrier labels are hand-designed heuristics built from
observable quantities. Second, the GP machinery introduces
computational overhead that grows with the number of data
points. Third, we did not develop a safety guarantee for the
coupled dynamics—barrier learning loop.

Finally, we made progress toward a vision-inertial (VIO)
quadrotor model, though we could not fully address the
additional complications within the project timeframe. The
quadrotor introduces higher-dimensional state and control
spaces, attitude-position coupling, and perception-driven esti-
mates with their own failure modes. These factors complicate
barrier label design, GP state representation, and CBF-QP
feasibility under aggressive maneuvers. Future work includes
(i) completing VIO quadrotor integration in simulation to learn
safe flight-envelopes; (ii) developing GP approximations and
kernels tailored to underactuated flight; and (iii) closing the
loop between safe BO and GP-CBF filtering for end-to-end
tuning.
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